Unicycle graphs with extremal Merrifield-Simmons Index

Hongzhuan Wang and Hongbo Hua*
Department of Computing Science Huaiyin Institute of Technology Huaian, Jiangsu 223000, People's Republic of China
E-mail: hongbo.hua@gmail.com

Received: 4 January 2006; revised 8 February 2006

Abstract

The Merrifield-Simmons index $f(G)$ of a (molecular) graph G is defined as the number of subsets of the vertex set, in which any two vertices are non-adjacent, i.e., the number of independent-vertex sets of G. By $\mathcal{U}(n, k)$ we denote the set of unicycle graphs in which the length of its unique cycle is k. In this paper, we investigate the Mer-rifield-Simmons index $f(G)$ for an unicycle graph G in $\mathcal{U}(n, k)$. Unicycle graphs with the largest or smallest Merrifield-Simmons index are uniquely determined.

KEY WORDS: unicycle graph, Merrifield-Simmons index, girth

1. Introduction

Let $G=(V(G), E(G))$ denote a graph whose set of vertices and set of edges are $V(G)$ and $E(G)$, respectively. For any $v \in V(G)$, we denote the neighbors of v as $N(v)$. By $n(G)$, we denote the number of vertices of G. All graphs considered here are both finite and simple. We denote, respectively, by S_{n}, P_{n}, and C_{n} the star, path, and cycle with n vertices.

Let $\left(G_{1}, v_{1}\right)$ and $\left(G_{2}, v_{2}\right)$ be two graphs rooted at v_{1} and v_{2}, respectively, then $G=\left(G_{1}, v_{1}\right) \bowtie\left(G_{1}, v_{2}\right)$ denote the graph obtained by identifying v_{1} with v_{2} as one common vertex. Let \mathcal{U}_{n} denote the set of all unicycle graphs of order n. By $\mathcal{U}(n, k)$ we denote the set of unicycle graphs in which the length of its cycle is k. For any graph G in $\mathcal{U}(n, k)$, we denote the unique cycle of length k in G as C_{k}. Other notations and terminology not defined here will conform to those in [1].

For any given graph G, its Merrifield-Simmons index, simply denoted as $f(G)$, is defined to be the number of subsets of the vertex set, in which any two vertices are non-adjacent, i.e., in graph-theoretical terminology, the number of independent-vertex subsets of G, including the empty set. We take the cycle $C_{4}=$

[^0]$v_{0} v_{1} v_{2} v_{3}$ for instance. The independent-vertex subsets of $V\left(C_{4}\right)$ of all size are as follows: $\emptyset,\left\{v_{0}\right\},\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{0}, v_{2}\right\},\left\{v_{1}, v_{3}\right\}$, and then $f\left(C_{4}\right)=7$. As for the path $P_{n}, f(G)$ is exactly equal to the Fibonacci number F_{n+2}. This is perhaps why some researchers call the Merrifield-Simmons index "Fibonacci number." The above-mentioned concept of a (molecular) graph is introduced in [2], and discussed later in [3]. The Merrifield-Simmons index for a molecular graph was extensively investigated in [4], where its chemical applications were demonstrated. In [5], Li et al. gave its other properties and applications. For progress along these lines (see [5-15]).

Let F_{n} denote the nth Fibonacci number. Then we have $F_{n}+F_{n+1}=F_{n+2}$ with initial conditions $F_{1}=F_{2}=1$.

In this paper, we investigate the Merrifield-Simmons index for unicycle graphs in $\mathcal{U}(n, k)$. We determine the unique unicycle graphs with the largest or smallest Merrifield-Simmons index.

For any graph G in $\mathcal{U}(n, k)$ with $n=k$, its Merrifield-Simmons index $f(G)$ can be easily calculated. So we'll always assume that $n \geqslant k+1$ throughout this paper.

2. Some lemmas

The following lemmas 2.1-2.4 can be found from [2,5].
Lemma 2.1. Let T be a tree. Then $F_{n+2} \leqslant f(T) \leqslant 2^{n-1}+1$ and $f(T)=F_{n+2}$ if and only if $T \cong P_{n}$ and $f(T)=2^{n-1}+1$ if and only if $T \cong S_{n}$.

Lemma 2.2. Let G be a graph with m components $G_{1}, G_{2}, \ldots, G_{m}$. Then $f(G)=\prod_{i=1}^{m} f\left(G_{i}\right)$.

Lemma 2.3. For any graph G with any $v \in V(G)$, we have

$$
f(G)=f(G-v)+f(G-[v]),
$$

where $[v]=N_{G}(v) \bigcup\{v\}$.
Lemma 2.4. Let $G_{1}=\left(V\left(G_{1}\right), E\left(G_{1}\right)\right)$ and $G_{2}=\left(V\left(G_{2}\right), E\left(G_{2}\right)\right)$ be two graphs. If $V\left(G_{1}\right)=V\left(G_{2}\right)$ and $E\left(G_{1}\right) \subset E\left(G_{2}\right)$, then $f\left(G_{1}\right)>f\left(G_{2}\right)$.

The following corollary follows immediately from lemma 2.4.

Corollary 2.5. Let $G_{1}=\left(V\left(G_{1}\right), E\left(G_{1}\right)\right)$ and $G_{2}=\left(V\left(G_{2}\right), E\left(G_{2}\right)\right)$ be two graphs. If $V\left(G_{1}\right)=V\left(G_{2}\right)$ and $E\left(G_{1}\right) \subseteq E\left(G_{2}\right)$, then $f\left(G_{1}\right) \geqslant f\left(G_{2}\right)$ with equality holds if and only if $G_{1} \cong G_{2}$.

3. Unicycle graphs with extremal Merrifield-Simmons index

For any graph G and $u, v \in V(G)$, set $[u, v]=[u] \bigcup[v]$, then we have
Lemma 3.1. For any graph G, we have $f(G-x y)=f(G)+f(G-[x, y])$ and $f(G+y z)=f(G)-f(G-[y, z])$ for any $x y \in E(G)$ and $y z \notin E(G)$.

Proof. It's not difficult to see that when deleting any edge $x y$ from $E(G)$, the Merrifield-Simmons index of G will increase, while adding the edge $y z$ into $E(G)$ will decrease the Merrifield-Simmons index of G. Obviously $f(G-x y)-$ $f(G)$ is equal to the number of independent sets containing both x any y in G, i.e., the number of independent sets of the graph $G-[x, y]$, which is equal to $f(G-[x, y])$. Similarly, $f(G)-f(G+y z)$ should be equal to the number of independent sets containing both y and z in G. It's exactly equal to $f(G-[y, z])$. So the result follows.

Let $\left(C_{k}, v_{i}\right) \bowtie\left(S_{n-k+1}, v_{i}\right)$ denote the graph obtained by identifying any vertex v_{i} of C_{k} with the center v_{i} of S_{n-k+1} and $\left(C_{k}, v_{i}\right) \bowtie\left(P_{n-k+1}, v_{i}\right)$ the graph obtained by identifying any vertex v_{i} of C_{k} with one end-vertex v_{i} of P_{n-k+1}.

For convenience, we simply denote $\left(C_{k}, v_{i}\right) \bowtie\left(S_{n-k+1}, v_{i}\right)$ and $\left(C_{k}, v_{i}\right) \bowtie$ $\left(P_{n-k+1}, v_{i}\right)$ as $\left(C_{k}, S_{n-k+1}\right)$ and $\left(C_{k}, P_{n-k+1}\right)$, respectively.

The next lemma follows directly for lemma 2.3 by an elementary calculating, so we omit its proof here.

Lemma 3.2. Let $G_{1} \cong\left(C_{k}, S_{n-k+1}\right)$ and $G_{2} \cong\left(C_{k}, P_{n-k+1}\right)$, then $f\left(G_{1}\right)=$ $2^{n-k} F_{k+1}+F_{k-1}$ and $f\left(G_{2}\right)=F_{k-1} F_{n-k+1}+F_{k+1} F_{n-k+2}$.

Before introducing the next lemma, we give the following definitions.
Set $S=\left\{v_{i} \in V\left(C_{k}\right): d\left(v_{i}\right) \geqslant 3\right\}$.
Let v_{i} be any vertex in C_{k}. By $T\left(v_{i}\right)$ we denote the connected component containing v_{i} of the graph $G-\left\{v_{i-1}, v_{i+1}\right\}$.

Theorem 3.3. Let G be a unicycle graph in $\mathcal{U}(n, k)$ such that $f(G)$ is as large or small as possible, then each $T\left(v_{i}\right)$ is a star or path of order $n\left(T\left(v_{i}\right)\right)$ resp., where v_{i} is any vertex of S.

Proof. Let G be a graph in $\mathcal{U}(n, k)$. Since $n \geqslant k+1$, then $S \neq \emptyset$. Let v_{k} be any vertex in S. By lemma 2.3, we must have

$$
\begin{aligned}
f(G) & =f\left(G-v_{k}\right)+f\left(G-\left[v_{k}\right]\right) \\
& =f\left(G_{1}\right) \prod_{i=1}^{l} f\left(T_{i}\right)+f\left(G_{2}\right) \prod_{j=1}^{m} f\left(T_{j}\right),
\end{aligned}
$$

where T_{i} and T_{j} denote, respectively, the subtrees of $T\left(v_{k}\right)$ in the graphs $G-v_{k}$ and $G-\left[v_{k}\right]$ while G_{1} and G_{2} denote, respectively, the graphs $G-\bigcup_{i=1}^{l} T_{i}-v_{k}$ and $G-\bigcup_{j=1}^{m} T_{j}-\left[v_{k}\right]$. It's not difficult to see that $G_{2}=G_{1}-\left\{v_{k-1}, v_{k+1}\right\}$.

From lemma 2.3 it follows that

$$
\begin{aligned}
f\left(G_{2}\right) & =f\left(G_{1}-v_{k-1}-v_{k+1}\right) \\
& =f\left(G_{1}\right)-f\left(G_{1}-\left[v_{k-1}\right]\right)-f\left(G_{1}-v_{k-1}-\left[v_{k+1}\right]\right)
\end{aligned}
$$

Set $A=\prod_{i=1}^{l} f\left(T_{i}\right)$ and $B=\prod_{j=1}^{m} f\left(T_{j}\right)$, then

$$
\begin{align*}
f(G) & =A f\left(G_{1}\right)+B f\left(G_{2}\right) \\
& =A f\left(G_{1}\right)+B\left[f\left(G_{1}\right)-f\left(G_{1}-\left[v_{k-1}\right]\right)-f\left(G_{1}-v_{k-1}-\left[v_{k+1}\right]\right)\right] \\
& =(A+B) f\left(G_{1}\right)-B\left[f\left(G_{1}-\left[v_{k-1}\right]\right)+f\left(G_{1}-v_{k-1}-\left[v_{k+1}\right]\right)\right] \tag{1}
\end{align*}
$$

When $f(G)$ is large enough, since $f\left(G_{1}\right)>0$ and $f\left(G_{1}-\left[v_{k-1}\right]\right)+f\left(G_{1}-\right.$ $\left.\left.v_{k-1}-\left[v_{k+1}\right]\right)\right]>0$, we must get that $A+B$ is large enough while B is small enough. It implies that $A=(A+B)+(-B)$ is large enough. It's easy to see that $A=\prod_{i=1}^{l} f\left(T_{i}\right) \leqslant 2^{\sum_{i=1}^{l} n\left(T_{i}\right)}$, where the equality holds if and only if each T_{i} is an isolated vertex. It follows that $T\left(v_{k}\right)$ is a star. Since v_{k} is arbitrarily chosen, then each $T\left(v_{k}\right)$ is a star of order $n\left(T\left(v_{k}\right)\right)$.

When $f(G)$ is small enough, $A=(A+B)+(-B)$ must be small enough by (1). From lemmas 2.1, 2.2 and corollary 2.5 follows that

$$
A=\prod_{i=1}^{l} f\left(T_{i}\right) \geqslant \prod_{i=1}^{l} f\left(P_{n\left(T_{i}\right)}\right)=f\left(\bigcup_{i=1}^{l} P_{n\left(T_{i}\right)}\right) \geqslant f\left(P_{\sum_{i=1}^{l} n\left(T_{i}\right)}\right)
$$

It's easy to see that the above equality holds if and only if $T\left(v_{k}\right)$ is a path of order $n\left(T\left(v_{k}\right)\right)$. Therefore proof of theorem 3.3 is completed.

Lemma 3.4. If G is a unicycle graph in $\mathcal{U}(n, k)$ such that $f(G)$ achieves the maximum cardinality, then $G \cong\left(C_{k}, S_{n-k+1}\right)$.

Proof. Suppose G is a graph in $\mathcal{U}(n, k)$ with $f(G)$ taking the maximum value. For convenience, we call such a graph G to be maximum unicycle graph. By theorem 3.3, we know that each $T(x)$ is a star of order $n(T(x))$ for any $x \in S$.

If $|S|=1$, then $G \cong\left(C_{k}, S_{n-k+1}\right)$ and the result holds. So we may assume that $|S| \geqslant 2$. We will complete the proof by distinguishing the following two cases:

Case 1. For any $v \in S, d(v)=3$.
Let $S=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i s}\right\}(s \geqslant 2)$ and $N\left(v_{i j}\right)-V\left(C_{k}\right)=\left\{x_{j}\right\}$ where $j=$ $1,2, \ldots, s$.

Set $G^{\prime}=G-v_{i 2} x_{2}-\cdots-v_{i s} x_{s}+v_{i 1} x_{2}+\cdots+v_{i 1} x_{s}$. We will show that $f\left(G^{\prime}\right)>f(G)$ by induction on n, namely, the order of the graph G.

Assume that $f\left(G^{\prime}\right)>f(G)$ for any maximum unicycle graph G in $\mathcal{U}(n, k)$ with $|S| \geqslant 2$ and order $n^{\prime}<n$.

When $n^{\prime}=n$, by lemma 2.3, we have

$$
f\left(G^{\prime}\right)=f\left(G^{\prime}-x_{1}\right)+f\left(G^{\prime}-\left[x_{1}\right]\right)
$$

By induction hypothesis, we have $f\left(G^{\prime}-x_{1}\right) \geqslant f\left(G-x_{1}\right)$ with equality holding only if $|S|=2$.

Moreover, $f\left(G^{\prime}-\left[x_{1}\right]\right)=2^{s-1} f\left(G^{\prime \prime}\right)$ where $G^{\prime \prime}$ denote the graph $G^{\prime}-$ $\left\{v_{i 1}, x_{1}, \ldots, x_{s}\right\}$. Since $V\left(G^{\prime}-\left[x_{1}\right]\right)=V\left(G-\left[x_{1}\right]\right)$ and $E\left(G^{\prime}-\left[x_{1}\right]\right) \subset E\left(G-\left[x_{1}\right]\right)$, then $f\left(G^{\prime}-\left[x_{1}\right]\right)=2^{s-1} f\left(G^{\prime \prime}\right)>f\left(G-\left[x_{1}\right]\right)$ by lemma 2.4. Hence $f\left(G^{\prime}\right)>f(G)$ when $n^{\prime}=n$.

By the principle of mathematical induction, we know that $f\left(G^{\prime}\right)>f(G)$ for any maximum unicycle graph G in $\mathcal{U}(n, k)$ with $|S| \geqslant 2$. It's a contradiction to the maximality of $f(G)$.

Case 2. There exists some vertex $x \in S$ with $d(x) \geqslant 4$.
Let y be any other vertex in S. We denote, respectively, $N(x)-V\left(C_{k}\right)$ and $N(y)-V\left(C_{k}\right)$ as the sets $\left\{x_{1}, \ldots, x_{p}\right\}$ and $\left\{y_{1}, \ldots y_{q}\right\}$, where $p \geqslant 2$ and $q \geqslant 1$.

Set $G^{\prime}=G-y y_{1}-\cdots-y y_{q}+x y_{1}+\cdots+x y_{q}$. We will show that $f\left(G^{\prime}\right)>f(G)$ by induction on n, namely, the order of the graph G.

Suppose $f\left(G^{\prime}\right)>f(G)$ for all maximum unicycle graphs G in $\mathcal{U}(n, k)$ with order $n^{\prime}<n$ and $|S| \geqslant 2$.
When $n^{\prime}=n$, by lemma 2.3, we have

$$
f\left(G^{\prime}\right)=f\left(G^{\prime}-x_{1}\right)+f\left(G^{\prime}-\left[x_{1}\right]\right)
$$

By induction hypothesis, we have $f\left(G^{\prime}-x_{1}\right)>f\left(G-x_{1}\right)$.
For convenience, we denote $G_{1}=G^{\prime}-\left\{x, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{q}\right\}$ and $G_{2}=$ $G-\left\{x, x_{1}, \ldots, x_{p}\right\}$. Then

$$
\begin{aligned}
f\left(G^{\prime}-\left[x_{1}\right]\right) & =2^{p+q-1} f\left(G_{1}\right) \\
& =2^{p-1}\left[2^{q} f\left(G_{1}\right)\right] \\
& =2^{p-1} f\left(G_{2}-y y_{1}-\cdots-y y_{q}\right) .
\end{aligned}
$$

By lemma 3.1, $f\left(G_{2}-y y_{1}-\cdots-y y_{q}\right)=f\left(G_{2}\right)+f\left(G_{2}-\left[y, y_{1}\right]\right)+\cdots+$ $f\left(G_{2}-y y_{1}-\cdots-\left[y, y_{q}\right]\right)>f\left(G_{2}\right)$, so $f\left(G^{\prime}-\left[x_{1}\right]\right)>2^{p-1} f\left(G_{2}\right)=f\left(G-\left[x_{1}\right]\right)$ and then $f\left(G^{\prime}\right)>f(G)$ when $n^{\prime}=n$.

By the principle of mathematical induction, we have $f\left(G^{\prime}\right)>f(G)$ for any maximum unicycle graph G in $\mathcal{U}(n, k)$ with $|S| \geqslant 2$. It contradicts the choice of G once again.

From proof of cases 1 and 2 , we know that $|S|=1$ and $G \cong\left(C_{k}, S_{n-k+1}\right)$ when $f(G)$ takes the maximum cardinality.

Lemma 3.5. If G is a graph in $\mathcal{U}(n, k)$ such that $f(G)$ achieves the minimum cardinality, then $G \cong\left(C_{k}, P_{n-k+1}\right)$.

Proof. Let G be a graph in $\mathcal{U}(n, k)$ with $f(G)$ taking the minimum value. For convenience, we call such a graph G minimum unicycle graph. From theorem 3.3, each $T\left(v_{i}\right)$ is a path of order $n\left(T\left(v_{i}\right)\right)$ for any $v_{i} \in S$.

If $|S|=1$, then $G \cong\left(C_{k}, P_{n-k+1}\right)$ and the result holds. So we may assume that $|S| \geqslant 2$.

We'll show that the result holds by distinguishing the following two cases:
Case 1. For any $x \in S, T(x) \cong P_{2}$.
Let $S=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i s}\right\}(s \geqslant 2)$ and $N\left(v_{i j}\right)-V\left(C_{k}\right)=\left\{x_{j}\right\}$ where $j=$ $1,2, \ldots, s$.

Set $G^{\prime}=G-v_{i 2} x_{2}-\cdots-v_{i s} x_{s}+x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{s-1} x_{s}$. In the following, we will show that $f\left(G^{\prime}\right)<f(G)$ by induction on the order of the graph G.

Assume that $f\left(G^{\prime}\right)<f(G)$ for any minimum unicycle graph G in $\mathcal{U}(n, k)$ with order $n^{\prime}<n$ and $|S| \geqslant 2$.

When $n^{\prime}=n$, by lemma 2.3, we have

$$
f\left(G^{\prime}\right)=f\left(G^{\prime}-x_{s}\right)+f\left(G^{\prime}-\left[x_{s}\right]\right)
$$

By induction hypothesis, we have $f\left(G^{\prime}-x_{s}\right) \leqslant f\left(G-x_{s}\right)$ with equality holding only if $|S|=2$.

From lemmas 2.3 and 3.2, we obtain

$$
\begin{aligned}
f\left(G^{\prime}-\left[x_{s}\right]\right) & =f\left(G^{\prime}-\left[x_{s}\right]-v_{i 1}\right)+f\left(G^{\prime}-\left[x_{s}\right]-\left[v_{i 1}\right]\right) \\
& =F_{k+1} F_{n-k}+F_{k-1} F_{n-k-1}
\end{aligned}
$$

Moreover, we have

$$
f\left(G-\left[x_{s}\right]\right)=f\left(T_{n-2}\right) \geqslant f\left(P_{n-2}\right)=F_{n}
$$

by lemma 2.1.
Note that $F_{k+l}=F_{k+1} F_{l}+F_{k} F_{l-1}$. Thus

$$
\begin{aligned}
f\left(G-\left[x_{s}\right]\right) & \geqslant F_{n} \\
& =F_{k+(n-k)} \\
& =F_{k+1} F_{n-k}+F_{k} F_{n-k-1} \\
& >F_{k+1} F_{n-k}+F_{k-1} F_{n-k-1} \\
& =f\left(G^{\prime}-\left[x_{s}\right]\right) .
\end{aligned}
$$

Hence $f\left(G^{\prime}\right)<f(G)$ when $n^{\prime}=n$.

So, by the principle of mathematical induction, we have $f\left(G^{\prime}\right)<f(G)$ for all minimum unicycle graphs G in $\mathcal{U}(n, k)$ with $|S| \geqslant 2$, which contradicting the choice of G.

Case 2. There exists some vertex $x_{0} \in S$ with $T\left(x_{0}\right) \cong P_{t}\left(x_{0}\right)$ where $t \geqslant 3$. Let y_{0} be any other vertex in S. Denote $P_{t}\left(x_{0}\right)=x_{0} x_{1} x_{2} \ldots x_{t}(t \geqslant 2)$ and $P_{s}\left(y_{0}\right)=y_{0} y_{1} \ldots y_{s}(s \geqslant 1)$.

Set $G^{\prime}=G-x_{0} x_{1}+y_{s} x_{1}$, we will show that $f\left(G^{\prime}\right)<f(G)$ by induction on the order of G.

Suppose $f\left(G^{\prime}\right)<f(G)$ for all minimum unicycle graphs G in $\mathcal{U}(n, k)$ with order $n^{\prime}<n$ and $|S| \geqslant 2$.

When $n^{\prime}=n$, by lemma 2.3 , we have

$$
f\left(G^{\prime}\right)=f\left(G^{\prime}-x_{t}\right)+f\left(G^{\prime}-\left[x_{t}\right]\right)
$$

By induction hypothesis, we have $f\left(G^{\prime}-x_{t}\right) \leqslant f\left(G-x_{t}\right)$ and $f\left(G^{\prime}-\left[x_{t}\right]\right) \leqslant$ $f\left(G-\left[x_{t}\right]\right)$, where the first equality holds only if $t=1$ while the second one holds only if $t=2$.

Hence $f\left(G^{\prime}\right)<f(G)$ when $n^{\prime}=n$.
By the principle of mathematical induction, we know $f\left(G^{\prime}\right)<f(G)$ for all minimum unicycle graphs G in $\mathcal{U}(n, k)$ with $|S| \geqslant 2$, a contradiction to the minimality of $f(G)$ once again.

So $|S|=1$ and then $G \cong\left(C_{k}, P_{n-k+1}\right)$.
Theorem 3.6. Let G be any unicycle graph in $\mathcal{U}(n, k)$. Then $F_{k-1} F_{n-k+1}+$ $F_{k+1} F_{n-k+2} \leqslant f(G) \leqslant 2^{n-k} F_{k+1}+F_{k-1}$ with left equality holding if and only if $G \cong\left(C_{k}, P_{n-k+1}\right)$ and with right equality holding if and only if $G \cong$ $\left(C_{k}, S_{n-k+1}\right)$.

Proof. From lemmas 3.2, 3.4, and 3.5, we can easily get

$$
\begin{equation*}
F_{k-1} F_{n-k+1}+F_{k+1} F_{n-k+2} \leqslant f(G) \leqslant 2^{n-k} F_{k+1}+F_{k-1} \tag{2}
\end{equation*}
$$

The proof of if part is trivial. The proof of only if part is as follows.
Suppose $f(G)=F_{k-1} F_{n-k+1}+F_{k+1} F_{n-k+2}$ and $G \not \neq\left(C_{k}, P_{n-k+1}\right)$, then by lemma 3.5, we have

$$
f\left(C_{k}, P_{n-k+1}\right)<f(G)=F_{k-1} F_{n-k+1}+F_{k+1} F_{n-k+2}
$$

a contradiction to (2).
Similarly, if $f(G)=2^{n-k} F_{k+1}+F_{k-1}$ but $G \not \equiv\left(C_{k}, S_{n-k+1}\right)$, then

$$
f\left(C_{k}, S_{n-k+1}\right)>f(G)=2^{n-k} F_{k+1}+F_{k-1}
$$

by lemma 3.4 , a contradiction to (2) once again.
Therefore the proof is completed.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976).
[2] H. Prodinger and R.F. Tichy, Fibonacci Quart. 20(1) (1982) 16-21.
[3] A.F. Alameddine, Fibonacci Quart. 36(3) (1998) 206-210.
[4] R.E. Merrifield and H.E. Simmons, Topological Methods in Chemistry (Wiley, New York, 1989).
[5] X. Li, Z. Li and L. Wang, J. Comput. Biol. 10(1) (2003) 47-55.
[6] Y. Wang, X. Li and I. Gutman, Publ. L'Institut Math. NS 69(83) (2001) 41-50.
[7] H. Zhao and X. Li, 44(1) (2006) 32-38.
[8] X. Li, H. Zhao and I. Gutman, MATCH Commun. Math. Comput. Chem. 54(2) (2005) 389-402.
[9] R.E. Merrifield and H.E. Simmons, Proc. Natl. Acad. Sci. USA 78 (1981) 692-695.
[10] R.E. Merrifield and H.E. Simmons, Proc. Natl. Acad. Sci. USA 78 (1981) 1329-1332.
[11] V. Linek, Discr. Math. 76 (1989) 131-136.
[12] I. Gutman, Coll. Sci. Pap. Fac. Sci. Kragujevac 11 (1990) 11-18.
[13] I. Gutman and N. Kolaković, Bull. Acad. Serbe Sci. Arts (CI. Math. Natur.), 102 (1990) 39-46.
[14] I. Gutman, Publ. Inst. Math. (Beograd) 52 (1992) 5-9.
[15] X. Li, Aust. J. Comb. 14 (1996) 15-20.

[^0]: *Corresponding author.

